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Flow in a small annulus between 
concentric cylinders 
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Rotationally symmetric vortex flows between concentric cylinders with the inner one 
rotating and the outer one a t  rest have been investigated by numerical simulation 
and by laser-Doppler velocimetry for an annulus of aspect ratio r = 1.05 with a 
radius ratio 11 = 0.5066. Stationary states and relaxation towards them were 
explored close to the transition from the primary flow, which is mirror symmetric 
with respect to the midplane of the annulus, to a flow which gradually loses the 
symmetry. Detailed comparison of numerically simulated and measured velocity 
fields is made. 

1. Introduction 
The 'end effects ' caused by rigid top and bottom plates on flows between concentric 

rotating cylinders have recently received increasing attention. Various theoretical 
and experimental investigations of their influence upon rounding of bifurcations, 
mode selection and stabilization, flow multiplicity, hysteresis, etc. have contributed 
to a discussion that was initiated by Benjamin (1978) and which a t  present does not 
seem to be settled (cf. Di Prima & Swinney 1981 ; Benjamin & Mullin 1982; and the 
papers cited therein). 

Benjamin and Mullin have investigated flow changes in systems of small aspect 
ratios (annulus heightlgap width) r o v e r  a wide range of T a s  a function of Reynolds 
number from a somewhat global point of view.$ We study in this work in quantitative 
detail the rotationally symmetric flow in a short annulus of aspect ratio r = 1.05 
with a radius ratio 11 = 0.5066. This system is strongly influenced by the rigid fixed 
top and bottom boundaries. They cause - independently of the size of r - the 
tangential velocity and centrifugal forces close to the rotating inner cylinder to drop 
off sharply towards the plates. The associated vertical pressure gradient generates 
axial flow close to the inner cylinder directed away from the plates into the annulus. 
This normally induces, i.e. after quasistatic increase of the Reynolds number, end 
rolls with inward flow near the plates (Pfister & Rehberg 1981). 

Here the above mechanism generates a pair of vortex rolls well below the linear 
stability threshold 12: for onset of Taylor-vortex flow between infinitely long 
cylinders. Whereas there the rolls are nearly circular a t  R," with diameter roughly 
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given by the gap width d,  here they are vertically compressed to about 9. With 
increasing Reynolds number this flow intensifies, retaining the mirror symmetry with 
respect to the midplane of the annulus up to a critical forcing Rk. Then either the 
top or the bottom roll gradually grows with growing R a t  the expense of thc other 
towards a flow state containing asymptotically a t  large R a single vortex cell of 
diameter d .  For each value of the Reynolds number R > Rh there are two definite 
realizable flow ronfigurations that are mirror images of each other. 

Transitions between flows consisting of vortices with vertical extension 2 d and 
vortices compressed axially to about 9 have also been reported by Andreichikov 
(1977) ,  Frank & Meyer-Spasche (1981) and Jones (1982) in annuli with periodic axial 
boundaries. However, in contradistinction to our rigid-end-dominated flow, the 
vortices in the above system had an axial size >, d a t  smaller Reynolds numbers and 
were vertically compressed for larger driving. Also, solutions consisting of an 
altrrnating sequence of large and small vortices were found. While this feature 
resembles the flow in our system, i t  is obvious that the bifurcation behaviour of the 
periodically continued annulus is changed quite drastically into our experimentally 
observed bifurcation by imposing the experimental boundary conditions. 

2. Methods of investigation 

simulation. 
In  this section we describe the system, the experimental set-up and the numerical 

2.1. The system 
We have investigated rotationally symmetric flows of an incompressible fluid in the 
annulus between two concentric cylinders. The inner one (radius r l )  was rotating with 
angular velocity Q,, and the outer cylinder (radius r2) was at  rest. The annulus length 
L determined by two stationary plates in contact with the fluid was ncarly equal 
to the gap width d = r2 - r1  (cf. table 1) .  Hence the time for diffusion of momentum- 
density perturbations horizontally and vertically across the annulus is the same : 

Here Y denotes the kinematic viscosity of the fluid. 
We will reduce the Reynolds number 

R=- 9 1  ?"Id 
v 

( 2 . 2 )  

by the critical value i?: for onset of Taylor vortices between infinitely long cylinders 
(Kirchggssner 1961) with the same radius ratio q = r 1 / r 2 .  It should be borne in mind 
that R," is only a reference number without much meaning for our small system 
dominated by end effects. 

2.2. Experimental set-up 
In  the experimental realization of the system described above silicone oil was used. 
I ts  viscosity (cf. table 1 )  was measured with an accuracy of 1 %. During the 
experiment the fluid was thermostated to within 0.05 K so that the corresponding 
drift of the considered Reynolds number did not exceed 0.1 yo. 

The gap between the cylinders of radii given in table 1 was uniform to within 0.1 yo 
over the length Lexp = (12 _+ 0.1) mm of the annulus. The deviation of the aspect ratio 
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rl = 1.156 cm r2 = 2.282 cm d = 1.126 c.m 
= r , / r2  = 0.5066 v = 0.368 cmz//s R," = 68.2 

r = d2/2nv  = 0.548 s L = 1.1823 cm r=L/rE= 1.05 

'FABLE 1 

rexp = 1.066+0.009 from the value r = 1.05 used in the numerical simulation is 
too small to be resolved in our figures. Since we do not expect it to be relevant, we 
shall ignore i t  in the following. The angular velocity of the inner cylinder was 
electrically controlled with an accuracy of 0.5 yo for short-time averages, e.g. over one 
rotation, and of 0.05 yo for long-time averages. 

The local radial velocity was measured by a real-fringe Doppler anemometer using 
a tracker for analog recording of the velocity. Details of the velocity measurement 
method are explained in Vehrenkamp et al. (1979). The measurement volume of rough 
size 0.1 x 0.1 x 0.5 mm3 was positioned by a motor-driven lift and an (x, y)-table. We 
estimated the inaccuracy of the radial velocity measurement to be less than about 
1.0 cm/s, i.e. less than 2-3 times the size of the dots used in our figures below. This 
error comes almost entirely from inaccuracies in the localization of the scattering 
volume. Thereby the other velocity components contribute to the scattered light 
signal. 

2.3. Basic equations 
Our theoretical investigation starts from the standard Navier-Stokes equations for 
the velocity field u(r,  t )  written with the help of the incompressibility condition 

D = V * U  = 0 (2.3) 
in the form 

a,u,+vp(u,U,) = - V , P - ~ [ V X  ( v x u ) ] , ,  (2.4) 
which we found most convenient to solve numerically (for a discussion see Welch et 
al. 1966). The numerical simulation ofthe flow is based upon the above time-dependent 
equations. We were not only interested in stationary final flow states but also in the 
time evolution towards them. For example, we determined how the flow evolved, 
either starting from different initial states or as a function of different histories R(t) 
of the Reynolds number or in response to some imposed perturbation. 

In  (2.4) P(r,  t )  = p ( r ,  t ) / p  denotes the dynamic pressure divided by the mass density 
p.  I ts  relation to the velocity field is given by the Poisson equation 

V ~ P  = - v, v,(u, -a, D, (2 .5)  

which connects the longitudinal parts of (2.4). Here we have deliberately kept the 
term a, D = a, V - u ,  which vanishes according to (2.3). Solving the above equations 
approximately on a lattice in space and time one should retain the discretized version 
of a, D even though the appropriate restrictions aiming a t  D = 0 are enforced (Welch 
et al. 1966). 

For the rotationally invariant flows considered in this work, (2.4), (2.5) in a 
cylindrical coordinate system become 

( 2 . 6 ~ )  1 212 

r r a, + -a,(Tu2) --+ a,(uw) = -a, P- a,(a, w- a, u) ,  
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6 x 0  X .  x *  

1 
D = -a,(ru)+a,w. r (2.7) 

Here the radial velocity u, the tangential or azimuthal velocity v, the axial velocity 
w and the pressure depend on r ,  z and t .  

2.4. Numerical simulation 
We have solved (2.6) with the appropriate boundary conditions on a lattice (see 
below) with an explicit finite-difference method using forward differences for a, and 
central differences for spatial derivatives, with a truncation error O(At ,  Ax2) .  The 
procedure is as follows. Given the velocity field at time t,, we determine the pressure 
P(t,) by solving the discretized version of the Poisson equation (2.6d) iteratively by 
successive over-relaxation. This is the most time-consuming part of the program. To 
optimize it we extrapolate with orthogonal polynomials the previously determined 
pressures P(t ,  < t , )  in order to obtain good start values for the iteration. That can 
reduce the number of iterations by roughly a factor of three in comparison with 
unextrapolated start values P(t,-,). The rate of change of D entering (2.6d) is 
approximated by - D(tn)/At ,  thus imposing the incompressibility restriction via 
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D(t,+l) = 0. Having determined P(t,), we obtain the velocity field a t  time t ,+,  by 
a forward time step of (2.6a-c). 

Our lattice in the (r,z)-plane consists of three interlacing sublattices as shown 
schematically in figure 1: one (0)  for the radial velocity u, one (m) for the axial 
velocity w, and one ( x ) for the tangential velocity v and the pressure P. This lattice 
structure enforces correct momentum balance of the discretized equations (2.6a-c) 
for every cell indicated by thin lines in figure 1 (cf. Welch et al. 1966; Mihelcic et al. 
1981). 

The position of the lattice points and their spacings are chosen such that the fluid 
boundaries (full lines in figure 1) lie halfway between pressure points x . So the top 
and bottom boundaries of the annulus go through w-points m. The vertical boundaries 
at r l ,  r2 go through u-points 0 .  Note that there is one layer of lattice points outside 
the annulus, as indicated in figure 1 .  In  this work we impose rigid (no-slip) boundary 
conditions everywhere. They are implemented in two different ways; (i) a t  those 
points lying on a boundary we fix the corresponding velocity component to have 
the appropriate value, e.g. 4.) = 0 a t  r = r l ,  r , ;  (ii) for those components for 
which the lattice points do not fall on a boundary we enforce the average over the 
two points on either side of the boundary t o  have the appropriate value, e.g. 

Theoretical problems arise with the non-discretized Navier-Stokes equations in the 
corners near the inner cylinder from the discontinuity of the boundary condition for 
the tangential velocity. Experimentally, however, our LDV measurements, which 
could be done down to distances of about 0.2 mm from the inner corners, showed no 
anomalies there but a perfectly smooth velocity field. So if corner anomalies exist 
(which seems doubtful in view of the small gap separating the inner cylinder from 
the rigid fixed end) they are localized on a scale smaller than 0.2 mm. For this and 
other reasons, we therefore chose an arrangement of the v-points that  circumvents 
the theoretical problem, as shown in figure 1. With our closest v-points still being 
0.4 mm (0.2 mm for control runs with the finer mesh described below) away from the 
corners there were no numerical problems. The tangential velocity interpolated 
linearly along the horizontal and vertical 'lattice bonds' that connect the inner x 
close to the corner to the two outer x varies smoothly from Qlrl a t  rl to  zero at  
the rigid end plate. Evidence €or the fact that our simulation is accurate enough to 
yield the velocity field in the annulus on scales of our discretization may be derived 
from the comparison with experiments in 93. 

Results reported here were obtained on uniform lattices with a spacing between 
like points of 

w(.)inside+W(.)outside = 0 at  r = ~ 1 ,  r2 or i (v(  x )outside+v( x )inside) = Q1rl a t  ~ 1 .  

- -- -= Ar " 0.05 
d d  

using a time step of 

= 2.74 x 10-3. At - 
7 

For the above discretization the CPU time for a simulation of the flow for a time 
7 was about 29.7 s on an IBM 3033. To check the numerical accuracy we ran a few 
simulations on a lattice with half the above spacing and a time step reduced by about 
a factor four. The velocity differences nowhere exceeded 0.4 cm/s, i.e. four times the 
line width used in our figures for the velocity field. Mostly they were much smaller. 

F L M  140 I2 
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3. Results 
The main result of our investigation is the elucidation of a second-order transition 

from a flow consisting of one compressed Taylor vortex pair, which is mirror-symmetric 
with respect to the midplane of’ the annulus, to a flow that (gradually) loses this 
symmetry upon increasing the Reynolds number beyond a critical Rh z 1.8Slrz~. At 
this supercritical bifurcation one of the vortex rolls starts growing at the expense of 
the other towards a flow consisting asymptotically of a single vortex roll in the 
annulus. Furthermore, the results demonstrate that  our numerical simulation of the 
flow and the measured velocity field agree quantitatively. 

3.1. The velocity field 
The velocity field in our small system is strongly influenced by the rigid top and 
bottom plates. They cause the tangential velocity to drop to zero and thereby induce 
radial flow for all Reynolds numbers as described in $1. These strong boundary 
‘perturbations’ prevent the detection of remnants of the bifurcation in the ‘ideal ’ 
(T = co) system from circular Couette flow to Taylor-vortcx flow a t  RF. In  the 
r = 1.05 annulus the flow consists, even well below R:, of two compressed Taylor 
vortices with radial velocities that  increase smoothly with R. Figure 2 ( a )  shows a 
vertical cross-section of the rolls a t  R/R,4 = 1.30, i.e. e’ = -0.31, where 

E’ = (R-Ri)/RL. (3.1) 

The photo of the laser-illuminated (r,z)-plane of the fluid was made through a 
cylindrical lens. The arrows denoting the calculated velocity field projected onto the 
( i- ,  2)-plane demonstrate the overall agreement of numerically simulated and 
experimental flow pattern. 

As an aside we mention that we observed for the Reynolds number of figure 2 ( a )  
a small counter-circulating Moffat eddy (Moffat 1964; Moore 1981) in the top and 
bottom right-hand corners only with our finer mesh. The largest amplitude of this 
recirculating flow is only about 1.5 x of the largest radial flow in the midplane 
of the annulus. Since this effect is too fine to be detected in our laser-Doppler 
measurements as well as in the simulation with the coarse grid, i t  will not be discussed 
further. 

The flow rernains mirror-symmetric with respect to  the midplane of the annulus 
a t  z = 0,  

u(z) = u ( - z ) ,  v(z) = v(-z), w(z) = -w ( -z ) ,  (3.2) 

up to RL x 1.88RF. That seems to corroborate an estimation of the onset of 
asymmetry a t  RL x 2.0RF obtained (Benjamin & Mullin 1981) from flow observations 
in a system with the same aspect ratio but with a larger ratio 7 = 0.615 of radii. 

On increasing R beyond RL, the flow becomes gradually asymmetric (for a more 
detailed discussion see below). One roll - in figures 2 and 3 the upper one - grows and 
the other one decreases. Thereby the centre of the growing roll moves towards the 
centre of the annulus, while the smaller one is pushed into the lower left corner. At 
large R, e.g. R = 2.61R2, i.e. e’ = 0.39 shown in figure 2(b), the big roll fills almost 
the whole annulus, but a small one is still present close to the inner cylinder. The 
latter reflects the inward radial and axial flow that is induced by the sharp drop of 
the tangential velocity close to the inner cylinder towards the rigid fixed plate. The 
associated vertical pressure gradient favouring inwards-directed axial flow close to 
the inner cylinder lets the small roll survive against the tendency to form circular 
rolls. Note the agreement of flow simulation and experiment on this subtle feature. 
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(a I (b  1 
FIGIJRE 2.  Photographs of the vortex flow in a vertical cross-section of the annulus: (a )  below 
threshold for onset of asymmetric flow, E’ = -0.31 ; ( b )  above threshold, E’ = 0.3. The left (right) 
boundary is the inner (outer) cylinder. Arrows denote the simulated velocity field. 

Figure 3 shows the stationary velocity field in the middle of the gap a t  r = rl +@ 
as a function of z for various E’ between -0.31 and + 0.38. For E’ < 0 the above graphs 
have the mirror symmetry (3.1): a t  z = 0 the flow is outwards, u > 0, and near the 
top and bottom plates i t  is inwards, u < 0. With increasing E‘ > 0 the maximum of the 
radial (and tangential) velocity, i.e. the position of largest outward flow, as well as 
the zeros of u marking the border between inward and outward flow move downwards 
in the annulus. 

The measured radial velocity (dots) shows close to the transition E’ = 0 a larger 
asymmetry than the numerically simulated u (full line). This difference is presumably 
due to boundary imperfections of the experimental setup. The latter induce 
symmetry-breaking flow already below threshold (cf. figure 3 6 ) .  I n  addition, they 
enhance the asymmetry above (cf. figures 3c, d ) ,  thus causing appreciable experi- 
mental rounding of the bifurcation a t  E’ = 0. For larger distances ( E ’ (  from threshold, 
however, the experimental imperfections are less influential. Therefore the differences 
in figures 3 (a ,  e )  between simulated and experimental velocity fields become smaller 
and lie within the combined error bounds of both approaches. I n  view of these 
circumstances we consider the agreement between simulation and experiment to be 
good. That holds true also for the radial velocity field measured a t  the distance i d  
from the inner cylinder as a function of z .  

3.2. The  bifurcation 
To describe the above bifurcation more quantitatively we introduce the parameter 

[dr dz (u(r ,  z )  - u(r ,  - z ) )  
(3.3) 

which measures the deviation of the radial velocity field from the mirror symmetry. 
The integrations in (3.3) extend over a vertical cross-section of the annulus. P 

12 2 
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zld 
FICXRE 3. Velocity field in the middle of the gap at  r = r1 +id as a function of height z / d  for five 
different 8' = (R-RL) /R;:  (a )  -0.31; ( b )  -0.13; ( e )  0.039; ( d )  0.21; ( e )  0.38. Dots represent the 
measured radial velocity. Piecewise linear curves connect the numerically obtained velocities: -, 
u ;  ---, v-(v); -----, to. The average (v) of v in the middle of the gap along z can be read off at  
z / d  = &&T, where v = 0. 

vanishes in the symmetric phase. Furthermore, i t  is normalized such that JP( = 1 
for a single vortex roll with u ( z )  = -u( -2). The signature of P discriminates the 
position of the growing vortex: for positive (negative) P the bottom (top) roll is the 
larger one. Here, as throughout this paper, u is defined to  be positive for outward 
flow. The asymptotic value P = + 1 ( P  = - 1) denotes a single clockwise (counter- 
clockwise) swirling vortex that has grown out of the bottom (top) vortex. 

The Navier-Stokes equations (2.6) with mirror-symmetric boundaries are invariant 
under the mirror operation 

u(2) +u( - z ) ,  v(2) +?I( - z ) ,  w(2) +-w( -2). (3.4) 

Therefore two flows that are transformed into each other by the operation (3.4) are 
equivalent and have the same value of IPI. Hence the bifurcation diagram of P versus 
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Reynolds number is symmetric in the absence of imperfections breaking the mirror 
symmetry. 

Of course there are always such imperfections present not only in the experiment 
but also in the numerical simulation. Our experimental imperfections selected the 
P < 0 states with the larger roll on top when R was increased gradually, while P > 0 
states could be prepared by sudden starts of the inner cylinder to a high Reynolds 
number with a subsequent gradual decrease. I n  the numerical simulation, on the 
other hand, we generated P > 0 states by increasing the Reynolds number gradually 
or in several smaller steps to R > RL. To obtain P < 0 states numerically we first 
increased R from zero to a value well above Rk, e.g. e’ = 0.38. After the resulting 
flow with the large roll on top had become stationary, we varied e’ to the desired 
final value either gradually, or in several steps, or in one step, thereby producing in 
each case the same flow. 

With these two different procedures we could numerically generate for any given 
R > RL two different stationary, stable flow fields which - within our numerical 
accuracy - could be transformed into each other by the mirror operation (3.4) and 
which thus had the same value of /PI. We therefore conclude that symmetry-breaking 
imperfections inherent in the numerical simulation are too small to cause an 
appreciable rounding of the bifurcation by enhancing the asymmetry of a particular 
flow realization. But they are sufficiently large to bias the evolution from an initial 
symmetric state towards a final asymmetric flow in response t o  different histories R(1) 
of the driving. 

Figure 4 shows the numerically obtained bifurcation diagram. Since we found the 
transition to be symmetric the absolute value of P is plotted versus Reynolds 
numbers. The dots denote stationary flows. Triangles A( v) represent transient 
states which were realized upon increasing (decreasing) the Reynolds number con- 
tinuously along a ramp between e’ x -0.3 and e’ 2 0.5 with a ramp rate of 
Ide’/dt) = 1.055 x 10-’/7. Note the hysteresis of Y for the non-stationary flows. 

We extend our simulation up to R = 4.4RF, for which value (PI = 0.95 was still 
below its asymptotic limit. The small countercirculating vortex causing this deviation 
of )PI from 1 could be seen in the experimental flow realization in a corner near the 
inner cylinder for even larger Reynolds numbers up to the onset of time-dependent 
flow. 

3.3. Critical slowing down 
We fitted the first few dots of figure 4 above the transition to a square root and thus 
obtained RL x 1 .SSR? and P x & 2.45(e’)i close to the threshold. To check the above 
value of Rk we determine the critical slowing down of the relaxation rates y ( R ,  + R,) 
for final Reynolds numbers close to the transition. Here y(R,+R,) is the inverse of 
the time the system needs to relax to the stable stationary flow a t  R, after an 
instantaneous step of R from Ri of II,. Our definition of that  time required velocities 
of appreciable size to be stationary with respect to the first four significant digits. 
These results gave also RL x 1.88R, as the (final) Reynolds number for which y 
diverges. Close to RL, i.e. for Is;[ 5 0.15, y was practically independent of R,: the 
relaxation rates after steps from various initial states to various final states e’ 3 0 
close to the transition could be parametrized well by 

E’ . 0.77 y z -  
7 

Here y is defined to be negative for final states E’ < 0 

( 3 . 5 )  
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RIR, 
1.5 2.0 2.5 

1 .O l  I I I I I I I I I I 

I I I I I I 
-0.2 -0.1 0 0.1 0.2 0.3 0.4 

FIGURE 4. Numerically obtained bifurcation of the parameter P (3.3) measuring the radial velocity 
field’s deviation from mirror symmetry. Dots denote stationary flows. The triangles represent 
transient states which were realized by increasing (A) or decreasing (v) the Reynolds-number along 
a ramp with a rate Ids’ldtl = 1.055 x 10-2/~. Lines are guides to the eye. The full curve close to 
the bifurcation is the fit IPI = 2.45(~’)* obtained from the first few dots above threshold. See text 
for details concerning the symmetry of the bifurcation. 

E’ 

We also evaluated torques and the volume-averaged dissipation to see whether they 
showed any sign of the transition. Within our resolution the answer was no. The torque 
on the inner (outer) cylinder normalized by the torque for ideal Couette flow between 
infinitely long cylinders increased very smoothly in the range -0.3 < e’ < 0.4 from 
2.62 to 2.95 (0.36-0.57). The volume-averaged dissipation reduced by that of ideal 
Couette flow also increased smoothly - from 2.43 to 2.72 - without showing any hint 
of a transition. 

4. Summary 
We have investigated rotationally symmetric vortex flows in an annulus of aspect 

ratio r = 1.05 by numerical simulation and by laser-Doppler velocimetry with the 
following results: up to a threshold a t  RL z 1.88Rp, the flow is mirror-symmetric 
across the midplane of the annulus consisting of two vertically compressed vortex 
rolls. They are present well below the theoretical critical Reynolds number RP for 
onset of Taylor-vortex flow in the infinitely extended annulus. 

Above threshold the flow gradually becomes asymmetric. On increasing 
e’ = (R-  RL)/RL, either the top or the bottom roll grows, while the other one shrinks 
and is pushed into a corner near the inner cylinder. At large e’ the flow contains 
asymptotically a single vortex of diameter z d ,  although a small remnant of the 
second vortex survives in the corner for reasons already explained. 

For any particular e‘ > 0 two definite flows being mirror images of each other are 
possible. A properly defined parameter P ( d )  measurng the global deviation from 
mirror symmetry shows a symmetric supercritical bifurcation. Close to the threshold 
e‘ = 0 we found P x &2.45(s‘)$ for stationary states where the two branches denote 
the two flows described above. Transient non-stationary states prepared by varying 
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E' through threshold along a ramp show hysteresis. The position of the threshold was 
checked by investigating the critical slowing down of the flow. The time the system 
needs to relax towards the final stationary flow a t  cf after a sudden variation from 
an initial value is practically independent of E; near the threshold ~f = 0 and 
increasesd there - l / l E f l .  

The experimental set-up had sufficiently large symmetry-breaking boundary 
imperfections to induce asymmetric flow below threshold, to enhance the flow with 
the large roll on top ( P  < 0), and thus to cause rounding of the favoured bifurcation 
branch. States with P > 0 were obtained experimentally by sudden starts of the inner 
cylinder. Also the numerical simulation has inherent ' imperfections ', Although they 
are too small to cause numerically relevant asymmetry in the bifurcation diagram 
P(E'),  they are large enough to bias the time evolution of flows in response to  different 
histories of the forcing: increasing the Reynolds number smoothly through E' = 0 
generates P > 0 states (small roll on top). The corresponding mirror image (large roll 
on top) can be produced in the simulation by a procedure completely analogous to 
the experimental one : (i) sudden start of the inner cylinder to a value of E' well above 
threshold; (ii) relaxation; (iii) gradual decrease of e' to the desired value E' > 0. 

Taking experimental imperfections into account, the agreement between measured 
and simulated radial velocity fields is good. This seems to be the first numerical 
simulation of velocity fields in the Taylor system that agree quantitatively with 
measured ones. 

One of us, G.P., acknowledges support of the Stiftung Volkswagenwerk. 
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